uart

Pengertian UART

UART merupakan kepanjangan dari Universal Aysnchronous Receiver I Trasmitter. Seri8250, yang mencakup 16450, 16550, 16650 dan 16750, merupakan jenis UART yang banyak digunakan, pada gambar II.3 ditunjukkan diagram pin dari jenis UART ini.Ada kalanya UART ini terpadu dalam suatu chip bersama-sama dengan kontrol kanal paralel, kanal game, hard disk dan floppy drive.
Struktur Uart

Sebuah clock generator, biasanya kelipatan dari bit rate untuk memungkinkan pengambilan sampel di tengah bit.
• Input dan Output pergeseran register
• kontrol mengirim / menerima
• Kontrol logika untuk membaca / menulis
• Kirim / menerima buffer (opsional)
• Paralel data bus buffer (opsional)
• Pertama-in, first-out (FIFO) memori (opsional)

Dalam mengirim dan menerima data Universal Asynchronous Receiver / Transmitter (UART) dengan bit individu dan berurutan. UART berisi sebuah register geser yang merupakan metode dasar konversi antara bentuk serial dan paralel. UART biasanya tidak secara langsung menghasilkan atau menerima sinyal eksternal digunakan antara item yang berbeda dari peralatan. Sebuah perangkat interface yang terpisah digunakan untuk mengkonversi sinyal tingkat logika dari UART dan level sinyal eksternal. Setiap karakter dikirim sebagai sedikit logika mulai rendah, sejumlah bit dikonfigurasi data (biasanya 7 atau 8, kadang-kadang 5), sebuah bit paritas opsional, dan satu atau lebih berhenti logika bit tinggi. Pada 5-8 bit berikutnya, tergantung pada kode set digunakan, mewakili karakter. Setelah data bit mungkin sedikit paritas. Satu atau dua bit berikutnya selalu dalam tanda (logika tinggi, yaitu, '1 ') negara dan disebut stop bit (s). Penerima sinyal karakter yang selesai. Sejak mulai sedikit logika rendah (0) dan berhenti logika agak tinggi (1) selalu ada demarkasi yang jelas antara karakter sebelumnya dan berikutnya.

* Mengirimkan dan menerima data serial

Universal Asynchronous Transmitter Receiver / (UART) mengambil byte data dan mengirimkan bit individual secara berurutan. [1] Di tempat tujuan, sebuah UART kedua kembali merakit bit menjadi byte lengkap. Setiap UART berisi sebuah register geser yang merupakan metode dasar konversi antara bentuk serial dan paralel. Transmisi serial informasi digital (bit) melalui kawat tunggal atau media lainnya adalah biaya yang jauh lebih efektif daripada transmisi paralel melalui beberapa kabel.

UART biasanya tidak secara langsung menghasilkan atau menerima sinyal eksternal digunakan antara item yang berbeda dari peralatan. Perangkat antarmuka yang terpisah digunakan untuk mengkonversi sinyal tingkat logika dari UART dan dari tingkat sinyal eksternal. Sinyal eksternal mungkin berbagai bentuk. Contoh standar untuk sinyal tegangan RS-232, RS-422 dan RS-485 dari AMDAL. Secara historis, saat ini (dalam loop arus) digunakan di sirkuit telegraf. Beberapa skema sinyal tidak menggunakan kabel listrik. Contoh tersebut serat optik, IrDA (inframerah), dan (nirkabel) Bluetooth Serial Port Profile nya (SPP). Beberapa skema sinyal menggunakan modulasi dari sinyal pembawa (dengan atau tanpa kabel). Contohnya adalah modulasi sinyal audio dengan modem saluran telepon, RF modulasi dengan radio data, dan DC-LIN untuk komunikasi power line.

Komunikasi dapat "full duplex" (keduanya mengirim dan menerima pada waktu yang sama) atau "half duplex" (perangkat bergiliran transmisi dan menerima).

* Transmitter

Pada posisi pemancar, transmisi berlangsung dalam sebuah operasi sederhana, karena berada di bawah kontrol dari sistem transmisi. Setelah data disimpan dalam register geser, hardware UART menghasilkan mulai sedikit, menggeser jumlah yang diperlukan bit data ke dalam baris, menghasilkan dan menambahkan bit paritas (jika digunakan), dan menambahkan sedikit berhenti.
Karena transmisi karakter tunggal dapat memakan waktu yang lama relatif terhadap kecepatan CPU, UART akan mempertahankan bendera yang menunjukkan status dari host sibuk, sehingga sistem tidak menyimpan karakter baru untuk transmisi sampai sebelumnya telah selesai, dapat juga dilakukan dengan interrupt.
Karena full-duplex operasi membutuhkan karakter yang akan dikirim dan diterima pada saat yang sama, UART menggunakan dua shift register yang berbeda untuk karakter karakter ditransmisikan dan diterima.

* Receiver

Semua hardware UART operasi dikendalikan oleh sinyal clock yang berjalan pada beberapa data rate - setiap bit data untuk 16 jam pulsa. Receiver menguji kondisi sinyal yang masuk di setiap pulsa clock. Jika bit tersebut terjadi, satu-setengah dari waktu, dianggap untuk bertemu dan merupakan sinyal awal dari sebuah karakter baru. Setelah menunggu lama, tingkat clock yang dihasilkan ke sebuah register geser. Setelah jumlah yang diperlukan bit untuk jangka waktu yang lama karakter (5 sampai 8 bit, biasanya) telah berlalu, isi dari register geser yang tersedia (dalam modus paralel) ke sistem penerima. UART akan menetapkan bendera yang menunjukkan data baru tersedia, dan juga dapat menghasilkan interupsi prosesor untuk meminta prosesor host transfer data yang diterima.
Sebuah UART biasanya berisi komponen dari sebuah clock generator, biasanya kelipatan dari bit rate untuk memungkinkan pengambilan sampel dalam periode bit.Input tengah dan register keluaran bergeser. Mengirim / menerima kontrol. Membaca / menulis kontrol logika. Mengirim / menerima buffer (opsional). Paralel data bus buffer (opsional). Pertama-in, first-out (FIFO) memori (opsional). UART mengambil byte data dan mengirimkan bit individual secara berurutan. Setiap UART berisi sebuah register geser yang merupakan metode dasar konversi antara bentuk serial dan paralel. UART biasanya tidak secara langsung menghasilkan atau menerima sinyal eksternal digunakan antara item yang berbeda dari peralatan. Setiap karakter dikirim sebagai logika dengan pengiriman awal nilai rendah, jumlah bit data dikonfigurasi (biasanya 7 atau 8, kadang-kadang 5), sebuah bit paritas opsional, dan satu atau lebih berhenti logika bit tinggi. Bit pada penerima sinyal dan kemudian dilanjutkan dengan bit 5-8 berikutnya, tergantung pada kode set digunakan, mewakili karakter. Setelah itu, satu atau dua bit berikutnya selalu dalam keadaan logika tinggi, yaitu, '1 'dan disebut stop bit (s). Penerima sinyal selesai. Pada logika rendah (0) dan stop bit logika tinggi (1), ada demarkasi yang jelas antara karakter sebelumnya dan berikutnya.

Keping 16550 merupakan kompatibelnya 8250 dan 16450, perbedaannya terletak pada pin 24 dan 29:
Kaki                       16550                                    8250/16450
24                           TXRDY                                   CSOUT
29                           RXRDY                        Tidak dihubungkan

Pada 16550 terdapat sinyalTXRDY (Transmit Ready) dan RXRDY (Receive Ready) yang dapat digunakan untuk implementasi DMA (Direct Memory Access) dengan dua mode kerja (operasional):
1.       Mode 0 - Single Transfer DMA: lebih dikenal juga dengan mode 16450,mode ini diaktifkan dengan cara menon-aktifkanFIFO (bit-0 FCR = 0) atau dengan mengaktifkan FIFO dan pemilih mode DMA (bit-3 FCR = 1). Sinyal RXRDY akan aktif (rendah) jika ada (minimal) sebuah karakter pada penyangga penerima dan akan kembali non-aktif (tinggi) jika tidak ada satupun karakter pada penyangga penerima, sedangkan sinyal TXRDY akan aktif jika penyangga pengirim kosong sama sekali dan akan kembali non-aktif (tinggi) setelah karakter 1 byte pertama diisikan ke penyangga pengirim.

2.       Mode 1 - Multi Transfer DMA: dipilih dengan syarat FCR bit-0 = 1 dan FCR bit-3 - 1. Pada mode ini, sinyal RXRDY akan aktif (rendah) jika telah tercapai tingkat picuan (trigger level} atau saat munculnya time-out 16550 dan akan kembali non-aktif jika sudah tidak ada satupun karakter yang tersimpan dalam FIFO. Sinyal TXRDY akan aktif (rendah) jika tidak ada karakterpun pada penyangga pengirim dan akan non-aktif jika penyangga pengirim FIFO sudah betul-betul penuh.


Gambar Diagram Pin UART 16550 dan 8250/16450

Semua chip UART kompatibel dengan TTL (termasuk sinyal TxD, RxD, RI, DCD, DTS, CTS, DTR dan RTS), dengan demikian diperlukan konverter tingkat RS232 (RS232 level converter) yang berfungsi untuk mengkonversi sinyal TTL menjadi logika tingkat RS232. Interupsiin itu UART juga membutuhkan clock untuk operasionalnya, biasanya dibutuhkan kristal eksternal dengan frekuensi 1,8432 MHz atau 18,432 MHz.
Fungsi PinOut UART 16550 dan 8250/16450
PIN
Nama
Keterangan
Pin 1-8
D0:D7
Bus Data
Pin 9
RCLK
Masukan Clock penerima Frekuensinya harus sama dengan baud-rate x26
Pin 10
RD
Terima data
Pin 11
TD
Kirim data
Pin 12
CS0
Chip select 0 - aktif tinggi
Pin 13
CS1
Chip select 1 -  aktif rendah
Pin 14
CS2
Chip select 2 – aktif rendah
Pin 15
BOUDOUT
Keluaran Baud – Keluaran dari Pembangkit Baud Rate Terprogram. Frekuensi = (baud rate x 16)
Pin 16
XIN
Masukan kristal eksternal –Digunakan untuk osilator pembangkit Boud Rate
Pin 17
XOUT
Keluran Kristal Eksternal
Pin 18
WR
Jalur Tulis – Aktif Rendah
Pin 19
WR
Jalur Tulis – Aktif Tinggi
Pin 20
VSS
Dihubungkan ke ground
Pin 21
RD
Jalur Baca– Aktif Tinggi
Pin 22
RD
Jalur Baca – Aktif Rendah
Pin 23
DDIS
Drive disable. Pin ini akan rendah saat CPUmembaca dari UART. Dapat dihubungkan bus data kapasitas tinggi
Pin 24
TXRDY
Transmit Ready – Siap kirim
Pin 25
ADS
Address Store. Digunakan jika sinyal tidak stabil interupsima siklus baca atau tulis
Pin 26
A2
Bit alamat 2
Pin 27
A1
Bit alamat 1
Pin 28
A0
Bit alamat 0
Pin 29
RXRDY
Receive Ready (siap terima data)
Pin 30
INTR
Intrrupt Output (keluaran interupsi)
Pin 31
OUT2
User Output 2 (keluaran pengguna2)
Pin 32
RTS
Reguest to Send (permintaan pengiriman)
Pin 33
DTR
Dat Terminal Ready (Terminal data siap)
Pin 34
OUT1
User Output 1
Pin 35
MR
Master Riset
Pin 36
CTS
Clear To Send
Pin 37
DSR
Data Set Ready
Pin 38
DCD
Data Carrier Detect
Pin 39
RI
Ring Indikator (indicator dering)
Pin 40
VDD
+ 5 Volt

Tipe-tipe UART
         8250 UART pertama pada seri ini. Tidak memiliki register scratch, versi 8250A merupakan versi perbaikan dari 8250 yang mampu bekerja dengan lebih cepat;
         8250A UART ini lebih cepat dibandingkan dengan 8250 pada sisi bus. Lebih mirip secara perangkat lunak dibanding 16450;
         8250B Sangat mirip dengan 8250;
         16450 Digunakan pada komputer AT dengan kecepatan 38,4 Kbps, masih banyak digunakan hingga sekarang;
         16550 Generasi pertama UART yang memiliki penyangga, dengan panjang 16-byte, namun tidak bekerja (produk gagal) sehingga digantikan dengan
         16550A;
a.      16550A UART yang banyak digunakan pada komunikasi kecepatan tinggi, misalnya 14,4 Kbps atau 28,8 Kbps;
b.      16650 UART baru, memiliki penyangga FIFO 32-byte, karakter Xon/Xoff terprogram dan mendukung manajemen sumber daya;
         16750 Diproduksi oleh Texas Instrument, memiliki FIFO 64-byte!

Serial Peripheral Interfaces 

Dalam komputer, perangkat antarmuka serial (SPI) adalah sebuah antarmuka yang memungkinkan serial (satu bit pada satu waktu) pertukaran data antara dua perangkat, satu disebut master dan lainnya disebut budak. SPI beroperasi dalam mode full duplex. Ini berarti bahwa data dapat ditransfer dalam dua arah pada waktu yang sama. SPI yang paling sering digunakan dalam sistem untuk komunikasi antara central processing unit (CPU) dan perangkat periferal. Hal ini juga memungkinkan untuk menghubungkan dua mikroprosesor melalui SPI. Istilah ini awalnya diciptakan oleh Motorola. National Semiconductor memiliki antarmuka yang setara disebut Microwire.

Antarmuka Serial memiliki keunggulan tertentu atas antarmuka paralel. Keuntungan yang paling signifikan adalah kabel sederhana. Selain itu, kabel interface serial bisa lebih panjang daripada kabel antarmuka paralel, karena ada interaksi jauh lebih sedikit (crosstalk) di antara konduktor dalam kabel.

Banyak jenis perangkat dapat dikontrol oleh SPI, termasuk register geser, chip memori, ekspander pelabuhan, driver layar, konverter data, printer, perangkat penyimpanan data, sensor, dan mikroprosesor. Data ditransfer secara serial lebih dari kabel, masukan ke register geser, dan ditransfer dalam setiap subsistem melalui pemrosesan paralel.
 Transmisi Serial
Pada transmisi serial, pada setiap waktu hanya 1 bit data yang dikirimkan. Dengan kata lain, bit-bit data tersebut dikirimkan secara satu per satu. Model transmisi seperti ini dijumpai pada contoh seperti seorang pengguna menghubungkan terminal ke host komputer yang berada pada bangunan yang lain. Berikut merupakan gambar pengiriman transmisi serial dari pengirim ke penerima. Mode serial membutuhkan sinkronisasi/penyesuaian yang berfungsi untuk :
  • Mengetahui bilamana sinyal yang diterimanya merupakan bit data (sinkronisasi bit)
  • Mengetahui bilamana sinyal yang diterimanya membentuk sebuah karakter (sinkronisasi karakter)
  • Mengetahui bilamana sinyal yang diterimanya membentuk sebuah blok data (sinkronisasi blok)
Selanjutnya, pada transmisi serial dapat berbentuk dua jenis, yaitu transmisi serial sinkron (synchronous) dan transmisi serial asinkron (asynchronous). Berikut ini merupakan penjelasan dari masing-masing jenis transmisi serial tersebut. Transmisi Serial Sinkron (Synchronous).
Transmisi Serial Sinkron (Synchronous)
  • Pada transmisi sinkron, sebelum terjadi komunikasi, diadakan sinkronisasi clock antara pengirim dan penerima.
  • Data dikirim dalam satu blok data (disebut Frame) yang berisi bit2 Pembuka (preamble bit), bit data itu sendiri dan bit2 penutup postamble bit. Ditambahlan juga bit2 kontrol pada blok tersebut.
  • Variasi ukuran frame mulai 1500 byte sampai 4096 byte
  • Dalam komunikasi sinkron, sbh line 56 kbps mampu membawa data sampai 7000 byte per detik
Gambar Transmisi Serial Sinkron (Synchronous)
Transmisi Serial Asinkron (Asynchronous)
  • Pada transmisi Asinkron, sebelum terjadi komunikasi, tdk diadakan sinkronisasi clock antara pengirim dan penerima
  • Data dikirim per karakter dan masing2 karakter memiliki bit start (biasanya 0) dan bit stop (biasanya 1)
  • Start bit berfungsi utk menandakan adanya rangkaian bit karakter yang siap dicuplik.
  • Stop bit berfungsi utk melakukan proses menunggu karakter berikutnya
Setiap karakter terdiri dari 10 bit dengan rincian
  • 1 bit start bit
  • 1 bit stop bit
  • 7 bit data
            Contoh perangkat berbasis transmisi asinkron : RS-232, com #, USB, dll
ADC (Analog to Digital Convertion)


Analog To Digital Converter (ADC) adalah pengubah input analog menjadi kode – kode digital. ADC banyak digunakan sebagai pengatur proses industri, komunikasi digital dan rangkaian pengukuran/pengujian. Umumnya ADC digunakan sebagai perantara antara sensor yang kebanyakan analog dengan sistim komputer seperti sensor suhu, cahaya, tekanan/berat, aliran dan sebagainya kemudian diukur dengan menggunakan sistim digital (komputer).

 ADC (Analog to Digital Converter) memiliki 2 karakter prinsip, yaitu kecepatan sampling dan resolusi. Kecepatan sampling suatu ADC menyatakan seberapa sering sinyal analog dikonversikan ke bentuk sinyal digital pada selang waktu tertentu. Kecepatan sampling biasanya dinyatakan dalam sample per second (SPS).

Resolusi ADC menentukan ketelitian nilai hasil konversi ADC. Sebagai contoh: ADC 8 bit akan memiliki output 8 bit data digital, ini berarti sinyal input dapat dinyatakan dalam 255 (2n – 1) nilai diskrit. ADC 12 bit memiliki 12 bit output data digital, ini berarti sinyal input dapat dinyatakan dalam 4096 nilai diskrit. Dari contoh diatas ADC 12 bit akan memberikan ketelitian nilai hasil konversi yang jauh lebih baik daripada ADC 8 bit.

Prinsip kerja ADC adalah mengkonversi sinyal analog ke dalam bentuk besaran yang merupakan rasio perbandingan sinyal input dan tegangan referensi. Sebagai contoh, bila tegangan referensi (Vref) 5 volt, tegangan input 3 volt, rasio input terhadap referensi adalah 60%. Jadi, jika menggunakan ADC 8 bit dengan skala maksimum 255, akan didapatkan sinyal digital sebesar 60% x 255 = 153 (bentuk decimal) atau 10011001 (bentuk biner).

ADC Simultan
ADC Simultan atau biasa disebut flash converter atau parallel converter. Input analog Vi yang akan diubah ke bentuk digital diberikan secara simultan pada sisi + pada komparator tersebut, dan input pada sisi – tergantung pada ukuran bit converter. Ketika Vi melebihi tegangan input – dari suatu komparator, maka output komparator adalah high, sebaliknya akan memberikan output low.

Bila Vref diset pada nilai 5 Volt, maka dari gambar rangkaian ADC Simultan diatas didapatkan : V(-) untuk C7 = Vref * (13/14) = 4,64
V(-) untuk C6 = Vref * (11/14) = 3,93
V(-) untuk C5 = Vref * (9/14) = 3,21
V(-) untuk C4 = Vref * (7/14) = 2,5
V(-) untuk C3 = Vref * (5/14) = 1,78
V(-) untuk C2 = Vref * (3/14) = 1,07
V(-) untuk C1 = Vref * (1/14) = 0,36

Sebagai contoh Vin diberi sinyal analog 3 Volt, maka output dari C7=0, C6=0, C5=0, C4=1, C3=1, C2=1, C1=1, sehingga didapatkan output ADC yaitu 100 biner, sehingga diperoleh tabel berikut :




0 komentar:



Posting Komentar

Stats

Pages

cctv

kursor

lagu

Pages

Diberdayakan oleh Blogger.

Ads 468x60px

Popular Posts

Followers

Search

Popular Posts

Copyright Text

Featured Posts